π导航  


【首页】

TensorFlow 2.0 Overview


【2020-04-12】 人工智能】



TensorFlow 2.0 is both simple and flexible, focusing on features like:

  • Fast model design and high-level control with Keras

  • Estimator API for machine learning workflows, with premade models for regression, boosted trees, and random forests

  • Eager execution for imperative programming, with AutoGraph for taking advantage of graph execution

  • SavedModel for exporting trained models and deploying on any platform

全屏

First Tutorial

For our first lessons, we'll take a quick look at some MNIST examples with fully-connected and convolutional neural networks to get familiar with the core features of TensorFlow 2.0:

  • tf.keras: A high-level, object-oriented API for fast prototyping of deep learning models

  • tf.GradientTape: Records gradients on-the-fly for automatic differentiation and backprop

  • tf.function: Pre-compile computational graphs from python functions with AutoGraph

Fully-connected Network

For our first lesson, we'll train a fully-connected neural network for MNIST handwritten digit recognition. Let's start by setting up some methods to load MNIST from keras.datasets and preprocess them into rows of normalized 784-dimensional vectors.

import os

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers, optimizers, datasets


os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # or any {'0', '1', '2'}


def mnist_dataset():

(x, y), _ = datasets.mnist.load_data()

ds = tf.data.Dataset.from_tensor_slices((x, y))

ds = ds.map(prepare_mnist_features_and_labels)

ds = ds.take(20000).shuffle(20000).batch(100)

return ds


def prepare_mnist_features_and_labels(x, y):

x = tf.cast(x, tf.float32) / 255.0

y = tf.cast(y, tf.int64)

return x, y

Now let's build our network as a keras.Sequential model and instantiate an ADAM optimizer from keras.optimizers.

model = keras.Sequential([

layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)),

layers.Dense(100, activation='relu'),

layers.Dense(100, activation='relu'),

layers.Dense(10)])


optimizer = optimizers.Adam()

With our data and model set up, we can start setting up the training procedure. For the methods here, we use the @tf.function AutoGraph decorator to pre-compile our methods as TensorFlow computational graphs. TensorFlow 2.0 is fully imperative, so the AutoGraph decorator isn't necessary for our code to work, but it speeds up execution and lets us take advantage of graph execution, so @tf.function is definitely worth using in our case.

@tf.function

def compute_loss(logits, labels):

return tf.reduce_mean(

tf.nn.sparse_softmax_cross_entropy_with_logits(

logits=logits, labels=labels))


@tf.function

def compute_accuracy(logits, labels):

predictions = tf.argmax(logits, axis=1)

return tf.reduce_mean(tf.cast(tf.equal(predictions, labels), tf.float32))


@tf.function

def train_one_step(model, optimizer, x, y):


with tf.GradientTape() as tape:

logits = model(x)

loss = compute_loss(logits, y)


# compute gradient

grads = tape.gradient(loss, model.trainable_variables)

# update to weights

optimizer.apply_gradients(zip(grads, model.trainable_variables))


accuracy = compute_accuracy(logits, y)


# loss and accuracy is scalar tensor

return loss, accuracy


def train(epoch, model, optimizer):


train_ds = mnist_dataset()

loss = 0.0

accuracy = 0.0

for step, (x, y) in enumerate(train_ds):

loss, accuracy = train_one_step(model, optimizer, x, y)


if step % 500 == 0:

print('epoch', epoch, ': loss', loss.numpy(), '; accuracy', accuracy.numpy())


return loss, accuracy

Now that we have our training procedure set up, we can throw it in a loop and start training!

for epoch in range(20):

loss, accuracy = train(epoch, model, optimizer)


print('Final epoch', epoch, ': loss', loss.numpy(), '; accuracy', accuracy.numpy())

Convolutional Network

Now that we've gotten our feet we with a simple DNN, let's try something more advanced. Although the process is the same, we'll be working with some additional features:

  • Convolution, pooling, and dropout layers for building more complex models

  • Visualizing training with TensorBoard

  • Validation and test set evaluation for measuring generalizability

  • Exporting with SavedModel to save training progress and deploy trained models

As usual, we'll start by preparing our MNIST data.

import os

import time

import numpy as np

import tensorflow as tf

from tensorflow.python.ops import summary_ops_v2

from tensorflow import keras

from tensorflow.keras import datasets, layers, models, optimizers, metrics


os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # or any {'0', '1', '2'}



def mnist_datasets():

(x_train, y_train), (x_test, y_test) = datasets.mnist.load_data()

# Numpy defaults to dtype=float64; TF defaults to float32. Stick with float32.

x_train, x_test = x_train / np.float32(255), x_test / np.float32(255)

y_train, y_test = y_train.astype(np.int64), y_test.astype(np.int64)

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))

test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))

return train_dataset, test_dataset



train_ds, test_ds = mnist_datasets()

train_ds = train_ds.shuffle(60000).batch(100)

test_ds = test_ds.batch(100)

Now, let's use use Conv2D, MaxPooling2D, and Dropout from keras.layers to build a keras.Sequential convolutional model.

model = tf.keras.Sequential([

layers.Reshape(

target_shape=[28, 28, 1],

input_shape=(28, 28,)),

layers.Conv2D(2, 5, padding='same', activation=tf.nn.relu),

layers.MaxPooling2D((2, 2), (2, 2), padding='same'),

layers.Conv2D(4, 5, padding='same', activation=tf.nn.relu),

layers.MaxPooling2D((2, 2), (2, 2), padding='same'),

layers.Flatten(),

layers.Dense(32, activation=tf.nn.relu),

layers.Dropout(rate=0.4),

layers.Dense(10)])


optimizer = optimizers.SGD(learning_rate=0.01, momentum=0.5)

Next, let's set up forward and backward functionality. In addition to the training procedure, we'll also write test() a method for evaluation, and use tf.python.summary_ops_v2 to record training summaries to TensorBoard.

compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()


def train_step(model, optimizer, images, labels):


# Record the operations used to compute the loss, so that the gradient

# of the loss with respect to the variables can be computed.

with tf.GradientTape() as tape:

logits = model(images, training=True)

loss = compute_loss(labels, logits)

compute_accuracy(labels, logits)


grads = tape.gradient(loss, model.trainable_variables)

optimizer.apply_gradients(zip(grads, model.trainable_variables))


return loss


def train(model, optimizer, dataset, log_freq=50):

"""

Trains model on `dataset` using `optimizer`.

"""

# Metrics are stateful. They accumulate values and return a cumulative

# result when you call .result(). Clear accumulated values with .reset_states()

avg_loss = metrics.Mean('loss', dtype=tf.float32)


# Datasets can be iterated over like any other Python iterable.

for images, labels in dataset:

loss = train_step(model, optimizer, images, labels)

avg_loss(loss)


if tf.equal(optimizer.iterations % log_freq, 0):

# summary_ops_v2.scalar('loss', avg_loss.result(), step=optimizer.iterations)

# summary_ops_v2.scalar('accuracy', compute_accuracy.result(), step=optimizer.iterations)

print('step:', int(optimizer.iterations),

'loss:', avg_loss.result().numpy(),

'acc:', compute_accuracy.result().numpy())

avg_loss.reset_states()

compute_accuracy.reset_states()


def test(model, dataset, step_num):

"""

Perform an evaluation of `model` on the examples from `dataset`.

"""

avg_loss = metrics.Mean('loss', dtype=tf.float32)


for (images, labels) in dataset:

logits = model(images, training=False)

avg_loss(compute_loss(labels, logits))

compute_accuracy(labels, logits)


print('Model test set loss: {:0.4f} accuracy: {:0.2f}%'.format(

avg_loss.result(), compute_accuracy.result() * 100))


print('loss:', avg_loss.result(), 'acc:', compute_accuracy.result())

# summary_ops_v2.scalar('loss', avg_loss.result(), step=step_num)

# summary_ops_v2.scalar('accuracy', compute_accuracy.result(), step=step_num)

Now that we have our data, model, and training procedure ready, we just need to designate a directory and create a tf.train.Checkpoint file to save our parameters to as we train.

# Where to save checkpoints, tensorboard summaries, etc.

MODEL_DIR = '/tmp/tensorflow/mnist'



def apply_clean():

if tf.io.gfile.exists(MODEL_DIR):

print('Removing existing model dir: {}'.format(MODEL_DIR))

tf.io.gfile.rmtree(MODEL_DIR)



apply_clean()


checkpoint_dir = os.path.join(MODEL_DIR, 'checkpoints')

checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt')


checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)


# Restore variables on creation if a checkpoint exists.

checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

We're finally ready to start training!

NUM_TRAIN_EPOCHS = 5


for i in range(NUM_TRAIN_EPOCHS):

start = time.time()

# with train_summary_writer.as_default():

train(model, optimizer, train_ds, log_freq=500)

end = time.time()

print('Train time for epoch #{} ({} total steps): {}'.format(

i + 1, int(optimizer.iterations), end - start))

# with test_summary_writer.as_default():

# test(model, test_ds, optimizer.iterations)

checkpoint.save(checkpoint_prefix)

print('saved checkpoint.')


export_path = os.path.join(MODEL_DIR, 'export')

tf.saved_model.save(model, export_path)

print('saved SavedModel for exporting.')

Try it for yourself!

Train MNIST with a fully connected network:

python fc_train.py

Train MNIST with a convolutional network:

python conv_train.py



          

copyright©2018-2024 gotopie.com