π导航  


【首页】

第一个Tensorflow2程序


【2021-05-03】 人工智能】


import tensorflow as tf

载入并准备好 MNIST 数据集。将样本从整数转换为浮点数:

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数:

model = tf.keras.models.Sequential([

  tf.keras.layers.Flatten(input_shape=(28, 28)),

  tf.keras.layers.Dense(128, activation=´relu´),

  tf.keras.layers.Dropout(0.2),

  tf.keras.layers.Dense(10, activation=´softmax´)

])

model.compile(optimizer=´adam´,

              loss=´sparse_categorical_crossentropy´,

              metrics=[´accuracy´])

训练并验证模型:

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test,  y_test, verbose=2)



                        

copyright©2018-2021 gotopie.com