第一个Tensorflow2程序【2024-09-07】 【人工智能】 import tensorflow as tf 载入并准备好 MNIST 数据集。将样本从整数转换为浮点数: mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数: model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation=´relu´), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation=´softmax´) ]) model.compile(optimizer=´adam´, loss=´sparse_categorical_crossentropy´, metrics=[´accuracy´]) 训练并验证模型: model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test, verbose=2) |
                   |
copyright©2018-2024 gotopie.com